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Abstract— Accuracy enhancement of Component based 
selection model using Hybrid Soft computing Abstract: Need of 
component based selection is growing day by day. There have 
been several researches in existence that analyzed existing 
component based selection model using soft computing 
techniques. Several research works focused on optimizing 
software component selection model in CBSE using soft 
computing techniques. Thus there is need to improve the 
performance of component based selection model using hybrid 
soft  computing techniques. Several performance parameters 
are considered during data analytics operation. Organization 
tends to utilize mapping tools in order build sustainable 
designs for their processes as well as capabilities. During data 
analytics, acquisition, security, governance and standards, 
Insights and analysis, storage, visualization, optimization 
operation are performed. Proposed research has integrated 
PSO optimization technique with ANN based neural network 
to enhance the accuracy of component based selection model. 

Keywords— Component based selection, soft computing 
techniques, Hybrid soft computing techniques 

I. INTRODUCTION 

The popularity of component-based frameworks 
continues to rise as their reuse practises reduce software 
development costs, development times, and developer 
labour. A CBSS may be constructed using pre-existing, pre- 
tested components that the author can immediately put to 
use. Each of the several parts is unique in terms of its design, 
user interface, nomenclature, and physical composition. The 
function of a component may be inferred from its name; the 
interface is the point at which data enters the component; the 
component's body is the site of input and output. CBSD 
authors pull together various parts from a variety of design 
papers to create a whole. 

A. Component Based Software Engineering 
When designing and building computer-based systems, 

CBSE prioritizes the usage of reusable software components. 
It does more than just find potential pieces; it verifies the 
interfaces of those pieces, fixes any design flaws they may 
have, assembles them according to a predetermined 
architectural style, and keeps them current as system needs 
evolve. Component-based software development happens 
simultaneously with the process model for component-based 
software engineering. 

1) Component-based development:CBSE includes the 

practise of CBD, which happens along with domain 

engineering. The software team develops an acceptable 

architectural style for the analytical model of the application 

they are building via the use of analysis and architectural 

design techniques. 

2) CBSE Framework Activities: Component-Based 

Software Engineering's framework entails the following 

actions: 

a) Component Qualification: By doing this task, you 
can be guaranteed that the system architecture will establish 
the specifications needed for the components to become 
reusable. Components that may be reused are often 
recognised by the characteristics of their interfaces.  

b) Component Adaptation: To do this, the architecture 
must establish the design criteria for each component and 
specify how those components will link to one another. 
Existing reusable components may not always be permitted 
to be employed owing to the architecture's design rules and 
restrictions.  

c) Component Composition: This step verifies that the 
software parts have been properly integrated according to 
the system's Architectural style. The architecture explains 
the final product's structure by pointing out its connecting 
and coordinating systems. 

d) Component Update: This procedure guarantees that 
all reusable parts are current. As a result of integrating new 
features and functionality from third-party sources, upgrades 
may (the organisation that developed the reusable 
component may be outside the immediate control of the 
software engineering organisation accessing the component 
currently). 

3) Component-Based Models Life Cycle Proces: 
Component-based software engineering employs almost 

identical approaches, instruments, and ideas to those used in 

software engineering generally. Nonetheless, there are 

distinguishing features.  

a) Building systems from components: The principle 
underlying this is its potential for reuse. This implies that 
systems are assembled from parts that already exist. There 
are, however, certain drawbacks to using this strategy. This 
section lists a few of the repercussions. 

� Component-based systems have their own unique set 
of procedures for creating new features and fixing 
bugs, which are distinct from the procedures used to 
create individual components. 

� Component discovery and evaluation therefore 
become a whole new procedure. 
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� Differences exist between process-based and non-
component-based activities 

b) Requirements analysis and specification: This 
process involves examining how the proposed fix measures 
up to the specifications. It is determined whether the 
available parts are enough by comparing them to the 
specifications. 

c) System and software design: Similarly to the 
preceding stage, this one is dependent on the accessibility of 
the necessary parts. The prospective components should be 
compatible with a certain component model. 

d) Implementation and unit testing: The system's 
components should be integrated during construction. 
Connectivity is specified through "glue code," a term used 
by the authors.  

e) System Integration: The component framework's 
basic infrastructure components are combined with the 
application's own components. We sometimes refer to this 
as "component deployment. 

f) System verification and validation: It's 
recommended to stick with tried and true methods. An 
error's precise location is an example of a challenge unique 
to the component-based strategy. Black-box components 
from several manufacturers are used here. As a result of 
another component's failure, the first one may display an 
error. 

g) Operation support and maintenance: Essentially, 
it's not dissimilar to the integrating process. A system 
updates a part of itself. Most of the time, a change is made 
to an already existing part. An alternative is to include a new 
variant of the same component. 

h)  Component Model Implementations and Services: 
The components' operation necessitates a run-time 
environment. Commonality in the runtime environment is 
desirable. This encompasses the broad range of run-time 
services as well as those that are specialised to certain 
domains. Object creation, life cycle management, object 
persistence support, etc. are all examples of general 
services. 

There is a lack of adherence to CBSE concepts among 
the development teams. As a result, the development 
processes can't benefit from a component-based strategy. The 
method relies on recycling preexisting materials. The amount 
of work required to put this into effect is drastically lowered. 
However, this complicates system verification even more. 
There has to be a readjustment here as the development 
process progresses. By analysing real-world examples from a 
wide range of sectors, we learn that total separation of the 
development process is very difficult to attain. It also places 
a heavy emphasis on system and component verification, as 
well as architectural concerns. 

B. Soft computing techniques 
In order to address the complicated computational 

challenge, we turn to soft computing approaches, which 
provide us with the computing methods and helpful 
algorithms needed to handle the issue. In other words, it tells 
us how much room for error we have in a specific system or 
situation. This method is sometimes referred to as 

computational intelligence since it enables us to present and 
solve issues that are either very resource-intensive for 
hardware or are intractable. In the next portion of the tutorial, 
we will examine its operation and the many contexts in 
which it may be used to improve our system's functionality 
and performance and to provide a comprehensive solution to 
the involved issue. 

 

Fig. 1. Soft computing Techniques 

The following fall under one of three categories of soft 
computing methods. 

1) Artificial Neural Network: It uses a parallel 

distributed network and a connectionist approach. The two 

main varieties of neural networks are ANN and BNN. A 

unit is a neural network that operates on a single element. 

Input, mass, the processing element, and output are the 

unit's constituent parts. It works similarly to the way the 

human brain does. Using electrical impulses for 

communication, artificial neural networks are able to solve 

problems in parallel, which is their fundamental benefit. The 

primary drawback is that artificial neurons are not resilient 

to failure; if even one is destroyed, the system fails. 

2) Fuzzy Logic: Models based on logical reasoning, but 

subject to imprecision and fuzziness, are solved using the 

fuzzy logic method. Invented by Latzi A. Zadeh, it first 

appeared in 1965. The truth value in fuzzy logic is always 

between 0 and 1, hence the range is closed. In where 0 

indicates a fake value and 1 indicates a correct one. 

3) Swarm Intelligence: In the field of artificial 

intelligence known as swarm intelligence (SI), researchers 

examine the emergent collective behaviour in self-

organizing communities of agents. The study of social 

behaviour in natural communities, such as the migration of 

birds and fish, had a major influence on the development of 

SI. 

4) Genetic Algorithm in Soft Computing: John Holland, 

a professor at Cambridge University, first described the 

genetic algorithm in 1965. Evolutionary algorithms are used 

to find solutions to issues using the same concepts as natural 

selection. Ant colonies and swarm particles are two 

common optimization techniques used for issues involving 

the maximising and minimization of objective functions. It's 

in line with genetics and evolution and other biological 

processes. 
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II. LITERATURE REVIEW 

Kumar Singh et al. (2016) focused on a novel approach 
for improving testing technique of component based 
software. This study presents a strategy for better testing 
component-based software, analyses its efficacy, and 
highlights problems specific to testing the completed 
program's individual components. Some suggestions were 
also provided to enhance the testing method for component-
based applications [1]. 

Vale et al. (2016) introduced twenty-eight years of 
component-based software engineering. This study discusses 
five aspects of CBSE based on the data that is currently 
available: primary goals, research subjects, fields of 
application, intensity of research, and applied research 
methodologies. There was a dramatic uptick in study effort 
within the previous fourteen years. This report does more 
than just analyze the data; it also synthesizes the existing 
evidence, identifies ongoing concerns, and highlights 
research gaps [2]. 

Oliveira et al. (2016) presented rigorous development of 
component-based systems using component metadata and 
patterns. In this research, they focus on analysis speed and 
provide a much faster replacement for checking the rule side 
conditions by doing partial verification on component 
information throughout all stages of a component's creation 
and by making use of behavioural patterns [3]. 

Qi et al. (2016) reviewed weighted principal component 
analysis-based service selection method for multimedia 
services in cloud. Due to these difficulties, they propose a W 
PCA MSSM for choosing among available services. 
Compared to other options, ours offers two distinct benefits 
[4]. 

Parsaie et al. (2018) provided applications of soft 
computing techniques for prediction of energy dissipation on 
stepped spillways. The results of the constructed models 
were reviewed, and it was determined that all of them had 
enough performance to estimate the energy dissipation. 
When compared to the rest of the methods, however, MARS 
and SVM provide the most reliable results. Attention to 
structures of GMDH and MARS models indicated that 
Froude number, drop number, and ratio of critical depth to 
height of step are the most essential factors for modelling 
energy dissipation [5]. 

Gupta et al. (2018) focused on hybrid leakage 
management for water network using psf algorithm and soft 
computing techniques. This research introduces a pressure 
management strategy that combines maximizing the tank's 
water storage level with optimizing the control and 
localization of the PRV in a water distribution system to 
provide a hybrid model for decreasing leakage. [6] 

Kaur et al. (2018) introduced an analytic review on image 
enhancement techniques based on soft computing approach. 
In this article, they will go through many methods for 
improving images by making use of soft computing methods. 
Genetic algorithm, fuzzy-based enhancement, neural 
networks, and optimization methods are some of the methods 
used [7]. 

Delafrouz et al. (2018) reviewed a novel hybrid neural 
network based on phase space reconstruction technique for 
daily river flow prediction. The primary goal of this research 
is to improve the precision of daily river flow forecasts by 

developing a novel hybrid model (PSR-ANN) that utilizes 
both PSR and ANN methods. The data utilized in this study 
came from three different measuring sites in the United 
States and tracked the flow of several rivers [8]. 

Diwaker et al. (2018) presented prediction of software 
reliability using bio inspired soft computing techniques. 
Consequently, it is important to pinpoint the variables that 
have the most impact on the system's dependability. 
Nowadays, reusability is widely applied in many fields of 
study. CBS are built on the principle of reusability [9]. 

Gupta et al. (2018) explained advances in applying soft 
computing techniques for big data and cloud computing. Soft 
computing refers to a group of techniques that are unique in 
their approach and provide consistent results [10]. 

Bhardwaj et al. (2018) provided quality assurance 
through soft computing techniques in component based 
software. In this study, the author suggests a method of 
testing called "monkey testing" to ensure the system's 
continued high quality and safety [11]. 

Shreyas et al. (2019) focused on application of soft 
computing techniques in tunnelling and underground 
excavations: state of the art and future prospects. This article 
delves into the use of ANNs, RBFs, DTs, the RF method, 
SVMs, nonlinear regression techniques like MARS, and 
hybrid intelligent models for predicting the engineering 
response of tunnels and underground excavations [12].  

Banga, A., et. Al (2021) focused on training and 
evaluating a dataset after optimizing a software component 
using a deep neural network technique. The chosen 
components must be adjusted and adaptable according to the 
specified requirements. The suggested technique utilizes an 
LSTM layer to enhance the accuracy of the output [13]. 

Banga, A., et al. (2021) focused on the creation of an 
optimization model for selecting software    components in 
the construction of CBSS. The proposed model aims to 
enhance the functional performance of CBSS.  ACO has 
been used in prior studies to tackle optimization problems 
[14]. 

 Bousmaha, R., et al. (2021) presented a novel training 
approach called hybrid PSO with PLMVO. The purpose of 
this approach is to maximize both the number of hidden 
neurons and connection weights in FFNN concurrently. The 
hybrid method is used to enhance search performance in the 
solution space, hence demonstrating its effectiveness in 
mitigating the issue of being stuck in local minima [15].  

Gupta, Dr. V. et al. (2021) proposed Software 
engineering is a field that provides standardized approaches 
for developing, operating, and maintaining software. The 
major objective of the study is to identify a mechanism 
capable of generating the required level of force consistently 
throughout the testing phase [16].  

Wang, R., et al. (2023) focused PS) is a straight forward 
and effective technique that uses a population-based 
approach to solve a wide range of optimization problems. 
The enhanced DMS technique incorporates the Quasi-
Newton method to generate the exploitation subpopulation 
[17].  
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III. PROBLEM STATEMENT 

There have been several soft computing techniques that 
have been used for component selection in conventional 
researches. These techniques could be optimization or 
machine learning approach. But it has been observed that 
hybrid soft computing techniques are capable to enhance the 
scalability, reliability and efficiency of system. Thus 
proposed work is making use of hybrid soft computing 
mechanism in order to resolve the issues found in 
conventional soft computing mechanisms. 

IV. PROPOSED WORK 

Present research has considered research in area of 
component based software selection along with soft 
computing techniques. Fuzzy computing, neural network, 
swarm intelligence are soft computing techniques. Research 
is considering ANN from neural network and PSO from 
swarm intelligence to propose hybrid approach. Process flow 
of Software component selection is shown below: 

 

Fig. 2. Process of Software component selection 

 After considering the research related to component 
based software selection and soft computing, issues of 
conventional researches are identified and hybrid model is 
proposed that is considering ANN and PSO optimization 
mechanism. 

 

Fig. 3. Process flow of proposed work 

In proposed research component selection and 
classification has been made by integration of optimizer and 
machine learning approach. Weighted method class and 
depth of inheritance are calculated for software component. 
Then PSO optimizer is applied to get best solution. 
Component whose corresponding WMC and DIT is less than 
optimized value are filtered and this filtered dataset is 
transferred to ANN model for training in order to perform 
classification of software components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flow chart for Hybrid soft computing for CBSE model 

A. Hybridization of PSO and ANN 
The integration of ANN and PSO is a popular approach 

in optimization problems, leveraging the strengths of both 
techniques to enhance performance. The selection criteria for 
integrating these methods depend on the characteristics of 
the problem at hand and the desired optimization goals. 
ANNs are powerful machine learning models inspired by the 
structure and function of the human brain. They excel in 
learning complex patterns and relationships from data, 
making them suitable for various tasks such as classification, 
regression, and function approximation. PSO is a population-
based stochastic optimization technique inspired by the 
social behavior of bird flocking or fish schooling. The 
hybridization of ANN and PSO involves using PSO to 
optimize the parameters of the neural network model. This 
integration offers several advantages: 

a) Global Search Capability: PSO's ability to explore 
the search space efficiently enables the ANN to avoid local 
optima and find better solutions. 

b) Parameter Tuning: ANNs often require careful 
tuning of parameters such as learning rates, network 
architecture, and activation functions. PSO can automate 
this process by searching for optimal parameter values. 

c) Convergence Speed: PSO can accelerate the 
convergence of ANNs by guiding the search towards 
promising regions of the solution space. 

d) Robustness: The hybrid approach enhances the 
robustness of the optimization process, making it less 
sensitive to the choice of initial conditions and 
hyperparameters. 

Overall, the hybridization of ANN and PSO offers a 
robust and efficient approach to optimization problems, 
leveraging the complementary strengths of both techniques 
to achieve superior performance and scalability. 

Start 

Input software component to perform selection operation 

Get the WMC, DIT of components 

Find the optimized value for WMC and DIT 

Filter components considering corresponding optimum solution 

Initialize the Artificial neural network for training 

Classify dataset for training and testing 

Train model for component selection and classification 

Obtain and compare accuracy parameters 

Stop 
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B. Dataset Details 
In component-based selection simulations, the choice of 

dataset is crucial as it directly impacts the evaluation and 
validation of the selection process. Here's detailed 
information about a hypothetical dataset used for such 
simulations: 

1) Dataset Source: The dataset used for simulations in 

component-based selection could be sourced from various 

sources, such as publicly available repositories, real-world 

industry data, or generated synthetically for research 

purposes. In present research source of data is kaggle.com 

2) Size: The size of the dataset is below 10 MB that is 

sufficient to represent a diverse range of software 

components while being manageable for computational 

resources. For example, the dataset could contain thousands 

to tens of thousands of software components, each 

characterized by various attributes. 

3) Characteristics: The dataset should include relevant 

characteristics or features of software components that are 

crucial for the selection process. These characteristics could 

include: 

a) Functional Attributes: Such as the type of 
functionality provided by the component . 

b) Technical Attributes: Such as programming 
language, compatibility with platforms/frameworks, 
dependencies, and performance metrics. 

c) Quality Attributes: Including reliability, scalability, 
security, and maintainability metrics. 

d) Metadata: Such as version history, documentation 
availability, license type, and user ratings. 

4) Simulation Setup: The simulation setup involves 

defining the experimental framework and parameters for 

evaluating the component-based selection process. This 

includes: 

a) Selection Criteria: Clearly defining the criteria or 
objectives for component selection, such as maximizing 
functionality coverage, minimizing development effort, or 
optimizing for performance. 

b) Evaluation Metrics: Determining the metrics to 
evaluate the effectiveness of the selection process, such as 
precision, recall, F1-score, or utility measures tailored to 
specific objectives. 

c) Simulation Scenarios: Designing different 
simulation scenarios to represent diverse selection scenarios 
and constraints, such as resource limitations, compatibility 
requirements, or trade-offs between conflicting objectives. 

d) Cross-Validation: Implementing cross-validation 
techniques to ensure the robustness and generalization of the 
selection process by splitting the dataset into training and 
testing sets. 

5) Parameters: Various parameters influence the 

simulation process, including: 

a) Algorithm Parameters: If using machine learning or 
optimization algorithms for selection, parameters such as 
learning rates, convergence criteria, population size, and 
mutation rates need to be specified. 

b) Simulation Environment: Details about the 
computational environment, such as hardware 
specifications, software dependencies, and runtime 
configurations. 

c) Simulation Duration: Duration of the simulation 
experiment, including the number of iterations or epochs for 
iterative algorithms. 

Overall, the simulation setup and parameters should be 
carefully defined to accurately reflect the complexities and 
nuances of real-world component-based selection scenarios, 
ensuring reliable and meaningful evaluations of selection 
strategies and algorithms. 

V. SIMULATION RESULT 

The provided metrics present a comparison between the 
performance of a classification model on a non-optimized 
dataset and an optimized dataset across five different classes. 
In the non-optimized dataset, the model achieved accuracy 
rates ranging from 93.44% to 98.31% across the five classes, 
with consistent precision of 0.92 for all classes. However, 
there were variations in recall and F1-score, indicating 
differences in the model's ability to correctly identify 
instances and balance precision and recall. Specifically, 
while Classes 1, 2, 3, and 4 demonstrated high recall and F1-
scores (ranging from 0.94 to 0.97), Class 5 exhibited lower 
recall (0.81) and F1-score (0.86), suggesting potential 
challenges in accurately classifying instances in this class. 

On the other hand, the optimized dataset showed 
improvements in accuracy for all classes, with rates ranging 
from 95.97% to 98.53%. Notably, precision remained 
consistently high at 0.94 across all classes, indicating a 
robust ability to correctly classify instances. Moreover, the 
recall rates also improved across all classes compared to the 
non-optimized dataset, ranging from 0.95 to 0.96, 
demonstrating enhanced sensitivity in identifying instances. 
This improvement in recall contributed to higher F1-scores 
across all classes, with values ranging from 0.91 to 0.95.  

Overall, the optimization of the dataset led to 
enhancements in model performance, particularly in terms of 
recall and F1-score, indicating improved sensitivity and 
balance between precision and recall. These improvements 
suggest that the optimized dataset provided better training 
data or feature representation, enabling the model to make 
more accurate predictions across all classes, including the 
previously challenging Class 5.  

In present dataset there are 5 classes of components. 
Training and testing of dataset is made using ANN model 
without optimization has provided following confusion 
matrix: 

 

TABLE I.  CONFUSION MATRIX FOR WITHOUT 

OPTIMIZATION 

 Class 1 Class 2 Class 3 Class 4 Class 5 
Class 1 920 0 4 9 67 

Class 2 6 460 5 1 28 

Class 3 6 4 552 9 29 

Class 4 0 8 0 644 48 

Class 5 46 9 9 0 736 
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To extract accuracy, precision, recall, and F1 score from 
a confusion matrix, you first need to understand what each of 
these metrics represents: 

1) Accuracy: It measures the proportion of correctly 

classified instances among the total number of instances. 

Mathematically, it's calculated as (TP + TN) / (TP + TN + 

FP + FN), where TP is the number of true positives, TN is 

the number of true negatives, FP is the number of false 

positives, and FN is the number of false negatives. 

2) Precision: It measures the proportion of correctly 

predicted positive cases among all cases predicted as 

positive. Mathematically, it's calculated as TP / (TP + FP). 

3) Recall (Sensitivity): It measures the proportion of 

correctly predicted positive cases among all actual positive 

cases. Mathematically, it's calculated as TP / (TP + FN). 

4) F1 Score: It is the harmonic mean of precision and 

recall. It provides a single score that balances both precision 

and recall. Mathematically, it's calculated as 2 * (precision * 

recall) / (precision + recall). 
 

Step-by-step process: 

a) Calculate the true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN) for each 
class using the confusion matrix. 

b) Use the formulas mentioned above to calculate 
accuracy, precision, recall, and F1 score for each class. 

c) Optionally, you can compute micro-averaged and 
macro-averaged values for precision, recall, and F1 score 
across all classes. 

This process enables you to extract evaluation metrics 
from the confusion matrix, providing insights into the 
performance of a classification model across different 
classes. 

Results:  

TP: 3312  

Overall Accuracy: 92% 

TABLE II.  ACCURACY CHART FOR NON OPTIMIZED 

DATASET 

Class n 
(truth) 

n 
(classified) 

Accuracy Precision Recall F1 
Score 

1 978 1000 96.17% 0.92 0.94 0.93 

2 481 500 98.31% 0.92 0.96 0.94 

3 570 600 98.17% 0.92 0.97 0.94 

4 663 700 97.92% 0.92 0.97 0.94 

5 908 800 93.44% 0.92 0.81 0.86 

 

Training and testing of dataset using ANN model after 
filter dataset using PSO has provided following confusion 
matrix: 

 

 

 

 

 

TABLE III.  CONFUSION MATRIX FOR PROPOSED WORK 

 Class 1 Class 2 Class 3 Class 4 Class 5 
Class 1 940 7 4 9 40 

Class 2 6 470 5 3 16 

Class 3 8 2 564 9 17 

Class 4 3 7 8 658 24 

Class 5 32 7 4 5 752 

 
Result: 

TP: 3384  

Overall Accuracy: 94% 

TABLE IV.  ACCURACY CHART FOR PROPOSED WORK 

Class n 
(truth) 

n 
(classified) 

Accuracy Precision Recall F1 
Score 

1 989 1000 96.97% 0.94 0.95 0.95 

2 493 500 98.53% 0.94 0.95 0.95 

3 585 600 98.42% 0.94 0.96 0.95 

4 684 700 98.11% 0.94 0.96 0.95 

5 849 800 95.97% 0.94 0.89 0.91 

 

In the comparative analysis section, we assess the 
performance of our proposed hybrid approach against several 
benchmarks, including standalone ANN and PSO models, as 
well as other established techniques commonly employed in 
component-based software selection. Our evaluation aims to 
provide a comprehensive understanding of the effectiveness 
and practical utility of our approach in comparison to 
existing methodologies. Firstly, we compare our hybrid 
approach to standalone ANN and PSO models. We 
rigorously evaluate the performance of each individual 
technique across a range of metrics, including accuracy, 
convergence speed, and robustness.  

By conducting experiments under various scenarios and 
constraints, we gain insights into the strengths and 
limitations of standalone ANN and PSO models in 
component-based selection tasks. Additionally, we 
benchmark our proposed approach against other prominent 
techniques utilized in the field. This includes methodologies 
such as Decision Trees, SVM, GA, and Rule-Based Systems. 
Each technique is evaluated based on its ability to handle the 
complexities of component selection, considering factors 
such as interpretability, scalability, and computational 
efficiency.  

Furthermore, we establish appropriate benchmarks and 
evaluation metrics to ensure fair and consistent comparisons 
across different techniques. Real-world datasets or synthetic 
datasets with known ground truths are utilized to validate the 
performance of each approach under controlled conditions. 
Through extensive experimentation and analysis, we uncover 
valuable insights into the comparative strengths and 
weaknesses of our proposed hybrid approach relative. 
Comparison of Non optimized and optimized dataset overall 
accuracy during CBSE 
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TABLE V.  COMPARISON OF OVERALL ACCURACY 

Overall Accuracy for Non 
optimized CBSE model 

Overall Accuracy for Optimized 
CBSE model 

92 94 

 

Fig. 5. Comparison of overall accuracy  

TABLE VI.  COMPARISON OF OVERALL LOSS 

Overall Accuracy for Non 
optimized CBSE model 

Overall Accuracy for Optimized 
CBSE model 

8 6 

 

Fig. 6. Comparison of overall loss  

When comparing the time consumption between an 
optimized and a non-optimized dataset, several factors could 
influence why the overall time consumption might be greater 
for the optimized dataset despite its optimizations. 

1) Preprocessing and Feature Engineering: The 

optimized dataset may involve more complex preprocessing 

steps or feature engineering techniques to improve the 

quality of the data or to create more informative features.  

2) Model Training: With an optimized dataset, models 

may take longer to train due to increased data volume or 

complexity resulting from feature engineering.  

3) Hyperparameter Tuning: Optimizing a dataset often 

involves tuning model hyperparameters to achieve better 

performance. This process typically requires training 

multiple models with different hyperparameter 

configurations, which can significantly increase the overall 

time consumption compared to training a single model with 

default hyperparameters. 

4) Cross-Validation: To ensure robustness and 

generalization of the model on the optimized dataset, cross-

validation techniques might be employed.  

5) Evaluation and Validation: After training, models on 

the optimized dataset may undergo more extensive 

evaluation and validation procedures to assess their 

performance thoroughly.  

6) Iterative Optimization Process: Optimization is often 

an iterative process, where adjustments are made based on 

performance metrics, and models are retrained multiple 

times until satisfactory results are achieved.  

7) Resource Constraints: Despite optimizations, the 

computational resources available for training and 

evaluation might be limited, leading to longer processing 

times due to queuing or resource contention. 
Overall, while optimizations in the dataset can lead to 

better model performance, they often come at the cost of 
increased time consumption due to the additional steps 
involved in data preprocessing, model training, 
hyperparameter tuning, and evaluation. These trade-offs 
should be carefully considered based on the specific 
requirements and constraints of the project. 

TABLE VII.  COMPARISON OF OVERALL TIME CONSUMPTION 

Overall Time consumption for 
Non optimized CBSE model 

(Seconds) 

Overall Time consumption for 
Optimized CBSE model 

(Seconds) 
345 245 

 

Fig. 7. Comparison of overall Time consumption for non optimized and 
optimized CBSE (Hybrid) model 

VI. CONCLUSION 

In the proposed research it has been observed that an 
CBSE model that did not consider optimized dataset is 
providing less accuracy. Whereas the proposed model is 
considering optimized dataset has provided more accuracy as 
compared to the conventional approach. Several factors that 
influenced the accuracy are the size of the dataset, batch size, 
number of epochs, and hidden layers used in the research. It 
is concluded that proposed model is yielding better accuracy, 
less error and better performance as compared to 
conventional models. 

VII. FUTURE SCOPE OF RESEARCH 

Component-based selection model is capable to provide 
more control and lower maintenance costs. Searching for 

155



other applications where similar code might be used is 
reduced. It allows faster development to save time and 
increase revenue. Moreover it is also capable to take 
advantage of specialized skills. Thus hybrid approach 
proposed for CBSE model is capable to enhance its 
scalability, flexibility and efficiency. 
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