
Accuracy enhancement of Component based
selection model using Hybrid Soft computing

Anjali Banga
 Department of Computer Science

Engineering
Guru Jambheshwar University of

Science & Technology
 Hisar, Haryana,India

banga.anjali88@gmail.com

Pradeep Kumar Bhatia
Department of Computer Science

Engineering
Guru Jambheshwar University of

Science & Technology
 Hisar,Haryana, India

pkbhatia.gju@gmail.com

Abstract— Accuracy enhancement of Component based
selection model using Hybrid Soft computing Abstract: Need of
component based selection is growing day by day. There have
been several researches in existence that analyzed existing
component based selection model using soft computing
techniques. Several research works focused on optimizing
software component selection model in CBSE using soft
computing techniques. Thus there is need to improve the
performance of component based selection model using hybrid
soft computing techniques. Several performance parameters
are considered during data analytics operation. Organization
tends to utilize mapping tools in order build sustainable
designs for their processes as well as capabilities. During data
analytics, acquisition, security, governance and standards,
Insights and analysis, storage, visualization, optimization
operation are performed. Proposed research has integrated
PSO optimization technique with ANN based neural network
to enhance the accuracy of component based selection model.

Keywords— Component based selection, soft computing
techniques, Hybrid soft computing techniques

I. INTRODUCTION

The popularity of component-based frameworks
continues to rise as their reuse practises reduce software
development costs, development times, and developer
labour. A CBSS may be constructed using pre-existing, pre-
tested components that the author can immediately put to
use. Each of the several parts is unique in terms of its design,
user interface, nomenclature, and physical composition. The
function of a component may be inferred from its name; the
interface is the point at which data enters the component; the
component's body is the site of input and output. CBSD
authors pull together various parts from a variety of design
papers to create a whole.

A. Component Based Software Engineering
When designing and building computer-based systems,

CBSE prioritizes the usage of reusable software components.
It does more than just find potential pieces; it verifies the
interfaces of those pieces, fixes any design flaws they may
have, assembles them according to a predetermined
architectural style, and keeps them current as system needs
evolve. Component-based software development happens
simultaneously with the process model for component-based
software engineering.

1) Component-based development:CBSE includes the

practise of CBD, which happens along with domain

engineering. The software team develops an acceptable

architectural style for the analytical model of the application

they are building via the use of analysis and architectural

design techniques.

2) CBSE Framework Activities: Component-Based

Software Engineering's framework entails the following

actions:

a) Component Qualification: By doing this task, you
can be guaranteed that the system architecture will establish
the specifications needed for the components to become
reusable. Components that may be reused are often
recognised by the characteristics of their interfaces.

b) Component Adaptation: To do this, the architecture
must establish the design criteria for each component and
specify how those components will link to one another.
Existing reusable components may not always be permitted
to be employed owing to the architecture's design rules and
restrictions.

c) Component Composition: This step verifies that the
software parts have been properly integrated according to
the system's Architectural style. The architecture explains
the final product's structure by pointing out its connecting
and coordinating systems.

d) Component Update: This procedure guarantees that
all reusable parts are current. As a result of integrating new
features and functionality from third-party sources, upgrades
may (the organisation that developed the reusable
component may be outside the immediate control of the
software engineering organisation accessing the component
currently).

3) Component-Based Models Life Cycle Proces:
Component-based software engineering employs almost

identical approaches, instruments, and ideas to those used in

software engineering generally. Nonetheless, there are

distinguishing features.

a) Building systems from components: The principle
underlying this is its potential for reuse. This implies that
systems are assembled from parts that already exist. There
are, however, certain drawbacks to using this strategy. This
section lists a few of the repercussions.

� Component-based systems have their own unique set
of procedures for creating new features and fixing
bugs, which are distinct from the procedures used to
create individual components.

� Component discovery and evaluation therefore
become a whole new procedure.

149

2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT)

979-8-3503-7462-9/24/$31.00 ©2024 IEEE
DOI 10.1109/CCICT62777.2024.00035

� Differences exist between process-based and non-
component-based activities

b) Requirements analysis and specification: This
process involves examining how the proposed fix measures
up to the specifications. It is determined whether the
available parts are enough by comparing them to the
specifications.

c) System and software design: Similarly to the
preceding stage, this one is dependent on the accessibility of
the necessary parts. The prospective components should be
compatible with a certain component model.

d) Implementation and unit testing: The system's
components should be integrated during construction.
Connectivity is specified through "glue code," a term used
by the authors.

e) System Integration: The component framework's
basic infrastructure components are combined with the
application's own components. We sometimes refer to this
as "component deployment.

f) System verification and validation: It's
recommended to stick with tried and true methods. An
error's precise location is an example of a challenge unique
to the component-based strategy. Black-box components
from several manufacturers are used here. As a result of
another component's failure, the first one may display an
error.

g) Operation support and maintenance: Essentially,
it's not dissimilar to the integrating process. A system
updates a part of itself. Most of the time, a change is made
to an already existing part. An alternative is to include a new
variant of the same component.

h) Component Model Implementations and Services:
The components' operation necessitates a run-time
environment. Commonality in the runtime environment is
desirable. This encompasses the broad range of run-time
services as well as those that are specialised to certain
domains. Object creation, life cycle management, object
persistence support, etc. are all examples of general
services.

There is a lack of adherence to CBSE concepts among
the development teams. As a result, the development
processes can't benefit from a component-based strategy. The
method relies on recycling preexisting materials. The amount
of work required to put this into effect is drastically lowered.
However, this complicates system verification even more.
There has to be a readjustment here as the development
process progresses. By analysing real-world examples from a
wide range of sectors, we learn that total separation of the
development process is very difficult to attain. It also places
a heavy emphasis on system and component verification, as
well as architectural concerns.

B. Soft computing techniques
In order to address the complicated computational

challenge, we turn to soft computing approaches, which
provide us with the computing methods and helpful
algorithms needed to handle the issue. In other words, it tells
us how much room for error we have in a specific system or
situation. This method is sometimes referred to as

computational intelligence since it enables us to present and
solve issues that are either very resource-intensive for
hardware or are intractable. In the next portion of the tutorial,
we will examine its operation and the many contexts in
which it may be used to improve our system's functionality
and performance and to provide a comprehensive solution to
the involved issue.

Fig. 1. Soft computing Techniques

The following fall under one of three categories of soft
computing methods.

1) Artificial Neural Network: It uses a parallel

distributed network and a connectionist approach. The two

main varieties of neural networks are ANN and BNN. A

unit is a neural network that operates on a single element.

Input, mass, the processing element, and output are the

unit's constituent parts. It works similarly to the way the

human brain does. Using electrical impulses for

communication, artificial neural networks are able to solve

problems in parallel, which is their fundamental benefit. The

primary drawback is that artificial neurons are not resilient

to failure; if even one is destroyed, the system fails.

2) Fuzzy Logic: Models based on logical reasoning, but

subject to imprecision and fuzziness, are solved using the

fuzzy logic method. Invented by Latzi A. Zadeh, it first

appeared in 1965. The truth value in fuzzy logic is always

between 0 and 1, hence the range is closed. In where 0

indicates a fake value and 1 indicates a correct one.

3) Swarm Intelligence: In the field of artificial

intelligence known as swarm intelligence (SI), researchers

examine the emergent collective behaviour in self-

organizing communities of agents. The study of social

behaviour in natural communities, such as the migration of

birds and fish, had a major influence on the development of

SI.

4) Genetic Algorithm in Soft Computing: John Holland,

a professor at Cambridge University, first described the

genetic algorithm in 1965. Evolutionary algorithms are used

to find solutions to issues using the same concepts as natural

selection. Ant colonies and swarm particles are two

common optimization techniques used for issues involving

the maximising and minimization of objective functions. It's

in line with genetics and evolution and other biological

processes.

150

II. LITERATURE REVIEW

Kumar Singh et al. (2016) focused on a novel approach
for improving testing technique of component based
software. This study presents a strategy for better testing
component-based software, analyses its efficacy, and
highlights problems specific to testing the completed
program's individual components. Some suggestions were
also provided to enhance the testing method for component-
based applications [1].

Vale et al. (2016) introduced twenty-eight years of
component-based software engineering. This study discusses
five aspects of CBSE based on the data that is currently
available: primary goals, research subjects, fields of
application, intensity of research, and applied research
methodologies. There was a dramatic uptick in study effort
within the previous fourteen years. This report does more
than just analyze the data; it also synthesizes the existing
evidence, identifies ongoing concerns, and highlights
research gaps [2].

Oliveira et al. (2016) presented rigorous development of
component-based systems using component metadata and
patterns. In this research, they focus on analysis speed and
provide a much faster replacement for checking the rule side
conditions by doing partial verification on component
information throughout all stages of a component's creation
and by making use of behavioural patterns [3].

Qi et al. (2016) reviewed weighted principal component
analysis-based service selection method for multimedia
services in cloud. Due to these difficulties, they propose a W
PCA MSSM for choosing among available services.
Compared to other options, ours offers two distinct benefits
[4].

Parsaie et al. (2018) provided applications of soft
computing techniques for prediction of energy dissipation on
stepped spillways. The results of the constructed models
were reviewed, and it was determined that all of them had
enough performance to estimate the energy dissipation.
When compared to the rest of the methods, however, MARS
and SVM provide the most reliable results. Attention to
structures of GMDH and MARS models indicated that
Froude number, drop number, and ratio of critical depth to
height of step are the most essential factors for modelling
energy dissipation [5].

Gupta et al. (2018) focused on hybrid leakage
management for water network using psf algorithm and soft
computing techniques. This research introduces a pressure
management strategy that combines maximizing the tank's
water storage level with optimizing the control and
localization of the PRV in a water distribution system to
provide a hybrid model for decreasing leakage. [6]

Kaur et al. (2018) introduced an analytic review on image
enhancement techniques based on soft computing approach.
In this article, they will go through many methods for
improving images by making use of soft computing methods.
Genetic algorithm, fuzzy-based enhancement, neural
networks, and optimization methods are some of the methods
used [7].

Delafrouz et al. (2018) reviewed a novel hybrid neural
network based on phase space reconstruction technique for
daily river flow prediction. The primary goal of this research
is to improve the precision of daily river flow forecasts by

developing a novel hybrid model (PSR-ANN) that utilizes
both PSR and ANN methods. The data utilized in this study
came from three different measuring sites in the United
States and tracked the flow of several rivers [8].

Diwaker et al. (2018) presented prediction of software
reliability using bio inspired soft computing techniques.
Consequently, it is important to pinpoint the variables that
have the most impact on the system's dependability.
Nowadays, reusability is widely applied in many fields of
study. CBS are built on the principle of reusability [9].

Gupta et al. (2018) explained advances in applying soft
computing techniques for big data and cloud computing. Soft
computing refers to a group of techniques that are unique in
their approach and provide consistent results [10].

Bhardwaj et al. (2018) provided quality assurance
through soft computing techniques in component based
software. In this study, the author suggests a method of
testing called "monkey testing" to ensure the system's
continued high quality and safety [11].

Shreyas et al. (2019) focused on application of soft
computing techniques in tunnelling and underground
excavations: state of the art and future prospects. This article
delves into the use of ANNs, RBFs, DTs, the RF method,
SVMs, nonlinear regression techniques like MARS, and
hybrid intelligent models for predicting the engineering
response of tunnels and underground excavations [12].

Banga, A., et. Al (2021) focused on training and
evaluating a dataset after optimizing a software component
using a deep neural network technique. The chosen
components must be adjusted and adaptable according to the
specified requirements. The suggested technique utilizes an
LSTM layer to enhance the accuracy of the output [13].

Banga, A., et al. (2021) focused on the creation of an
optimization model for selecting software components in
the construction of CBSS. The proposed model aims to
enhance the functional performance of CBSS. ACO has
been used in prior studies to tackle optimization problems
[14].

 Bousmaha, R., et al. (2021) presented a novel training
approach called hybrid PSO with PLMVO. The purpose of
this approach is to maximize both the number of hidden
neurons and connection weights in FFNN concurrently. The
hybrid method is used to enhance search performance in the
solution space, hence demonstrating its effectiveness in
mitigating the issue of being stuck in local minima [15].

Gupta, Dr. V. et al. (2021) proposed Software
engineering is a field that provides standardized approaches
for developing, operating, and maintaining software. The
major objective of the study is to identify a mechanism
capable of generating the required level of force consistently
throughout the testing phase [16].

Wang, R., et al. (2023) focused PS) is a straight forward
and effective technique that uses a population-based
approach to solve a wide range of optimization problems.
The enhanced DMS technique incorporates the Quasi-
Newton method to generate the exploitation subpopulation
[17].

151

III. PROBLEM STATEMENT

There have been several soft computing techniques that
have been used for component selection in conventional
researches. These techniques could be optimization or
machine learning approach. But it has been observed that
hybrid soft computing techniques are capable to enhance the
scalability, reliability and efficiency of system. Thus
proposed work is making use of hybrid soft computing
mechanism in order to resolve the issues found in
conventional soft computing mechanisms.

IV. PROPOSED WORK

Present research has considered research in area of
component based software selection along with soft
computing techniques. Fuzzy computing, neural network,
swarm intelligence are soft computing techniques. Research
is considering ANN from neural network and PSO from
swarm intelligence to propose hybrid approach. Process flow
of Software component selection is shown below:

Fig. 2. Process of Software component selection

 After considering the research related to component
based software selection and soft computing, issues of
conventional researches are identified and hybrid model is
proposed that is considering ANN and PSO optimization
mechanism.

Fig. 3. Process flow of proposed work

In proposed research component selection and
classification has been made by integration of optimizer and
machine learning approach. Weighted method class and
depth of inheritance are calculated for software component.
Then PSO optimizer is applied to get best solution.
Component whose corresponding WMC and DIT is less than
optimized value are filtered and this filtered dataset is
transferred to ANN model for training in order to perform
classification of software components.

Fig. 4. Flow chart for Hybrid soft computing for CBSE model

A. Hybridization of PSO and ANN
The integration of ANN and PSO is a popular approach

in optimization problems, leveraging the strengths of both
techniques to enhance performance. The selection criteria for
integrating these methods depend on the characteristics of
the problem at hand and the desired optimization goals.
ANNs are powerful machine learning models inspired by the
structure and function of the human brain. They excel in
learning complex patterns and relationships from data,
making them suitable for various tasks such as classification,
regression, and function approximation. PSO is a population-
based stochastic optimization technique inspired by the
social behavior of bird flocking or fish schooling. The
hybridization of ANN and PSO involves using PSO to
optimize the parameters of the neural network model. This
integration offers several advantages:

a) Global Search Capability: PSO's ability to explore
the search space efficiently enables the ANN to avoid local
optima and find better solutions.

b) Parameter Tuning: ANNs often require careful
tuning of parameters such as learning rates, network
architecture, and activation functions. PSO can automate
this process by searching for optimal parameter values.

c) Convergence Speed: PSO can accelerate the
convergence of ANNs by guiding the search towards
promising regions of the solution space.

d) Robustness: The hybrid approach enhances the
robustness of the optimization process, making it less
sensitive to the choice of initial conditions and
hyperparameters.

Overall, the hybridization of ANN and PSO offers a
robust and efficient approach to optimization problems,
leveraging the complementary strengths of both techniques
to achieve superior performance and scalability.

Start

Input software component to perform selection operation

Get the WMC, DIT of components

Find the optimized value for WMC and DIT

Filter components considering corresponding optimum solution

Initialize the Artificial neural network for training

Classify dataset for training and testing

Train model for component selection and classification

Obtain and compare accuracy parameters

Stop

152

B. Dataset Details
In component-based selection simulations, the choice of

dataset is crucial as it directly impacts the evaluation and
validation of the selection process. Here's detailed
information about a hypothetical dataset used for such
simulations:

1) Dataset Source: The dataset used for simulations in

component-based selection could be sourced from various

sources, such as publicly available repositories, real-world

industry data, or generated synthetically for research

purposes. In present research source of data is kaggle.com

2) Size: The size of the dataset is below 10 MB that is

sufficient to represent a diverse range of software

components while being manageable for computational

resources. For example, the dataset could contain thousands

to tens of thousands of software components, each

characterized by various attributes.

3) Characteristics: The dataset should include relevant

characteristics or features of software components that are

crucial for the selection process. These characteristics could

include:

a) Functional Attributes: Such as the type of
functionality provided by the component .

b) Technical Attributes: Such as programming
language, compatibility with platforms/frameworks,
dependencies, and performance metrics.

c) Quality Attributes: Including reliability, scalability,
security, and maintainability metrics.

d) Metadata: Such as version history, documentation
availability, license type, and user ratings.

4) Simulation Setup: The simulation setup involves

defining the experimental framework and parameters for

evaluating the component-based selection process. This

includes:

a) Selection Criteria: Clearly defining the criteria or
objectives for component selection, such as maximizing
functionality coverage, minimizing development effort, or
optimizing for performance.

b) Evaluation Metrics: Determining the metrics to
evaluate the effectiveness of the selection process, such as
precision, recall, F1-score, or utility measures tailored to
specific objectives.

c) Simulation Scenarios: Designing different
simulation scenarios to represent diverse selection scenarios
and constraints, such as resource limitations, compatibility
requirements, or trade-offs between conflicting objectives.

d) Cross-Validation: Implementing cross-validation
techniques to ensure the robustness and generalization of the
selection process by splitting the dataset into training and
testing sets.

5) Parameters: Various parameters influence the

simulation process, including:

a) Algorithm Parameters: If using machine learning or
optimization algorithms for selection, parameters such as
learning rates, convergence criteria, population size, and
mutation rates need to be specified.

b) Simulation Environment: Details about the
computational environment, such as hardware
specifications, software dependencies, and runtime
configurations.

c) Simulation Duration: Duration of the simulation
experiment, including the number of iterations or epochs for
iterative algorithms.

Overall, the simulation setup and parameters should be
carefully defined to accurately reflect the complexities and
nuances of real-world component-based selection scenarios,
ensuring reliable and meaningful evaluations of selection
strategies and algorithms.

V. SIMULATION RESULT

The provided metrics present a comparison between the
performance of a classification model on a non-optimized
dataset and an optimized dataset across five different classes.
In the non-optimized dataset, the model achieved accuracy
rates ranging from 93.44% to 98.31% across the five classes,
with consistent precision of 0.92 for all classes. However,
there were variations in recall and F1-score, indicating
differences in the model's ability to correctly identify
instances and balance precision and recall. Specifically,
while Classes 1, 2, 3, and 4 demonstrated high recall and F1-
scores (ranging from 0.94 to 0.97), Class 5 exhibited lower
recall (0.81) and F1-score (0.86), suggesting potential
challenges in accurately classifying instances in this class.

On the other hand, the optimized dataset showed
improvements in accuracy for all classes, with rates ranging
from 95.97% to 98.53%. Notably, precision remained
consistently high at 0.94 across all classes, indicating a
robust ability to correctly classify instances. Moreover, the
recall rates also improved across all classes compared to the
non-optimized dataset, ranging from 0.95 to 0.96,
demonstrating enhanced sensitivity in identifying instances.
This improvement in recall contributed to higher F1-scores
across all classes, with values ranging from 0.91 to 0.95.

Overall, the optimization of the dataset led to
enhancements in model performance, particularly in terms of
recall and F1-score, indicating improved sensitivity and
balance between precision and recall. These improvements
suggest that the optimized dataset provided better training
data or feature representation, enabling the model to make
more accurate predictions across all classes, including the
previously challenging Class 5.

In present dataset there are 5 classes of components.
Training and testing of dataset is made using ANN model
without optimization has provided following confusion
matrix:

TABLE I. CONFUSION MATRIX FOR WITHOUT

OPTIMIZATION

 Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 920 0 4 9 67

Class 2 6 460 5 1 28

Class 3 6 4 552 9 29

Class 4 0 8 0 644 48

Class 5 46 9 9 0 736

153

To extract accuracy, precision, recall, and F1 score from
a confusion matrix, you first need to understand what each of
these metrics represents:

1) Accuracy: It measures the proportion of correctly

classified instances among the total number of instances.

Mathematically, it's calculated as (TP + TN) / (TP + TN +

FP + FN), where TP is the number of true positives, TN is

the number of true negatives, FP is the number of false

positives, and FN is the number of false negatives.

2) Precision: It measures the proportion of correctly

predicted positive cases among all cases predicted as

positive. Mathematically, it's calculated as TP / (TP + FP).

3) Recall (Sensitivity): It measures the proportion of

correctly predicted positive cases among all actual positive

cases. Mathematically, it's calculated as TP / (TP + FN).

4) F1 Score: It is the harmonic mean of precision and

recall. It provides a single score that balances both precision

and recall. Mathematically, it's calculated as 2 * (precision *

recall) / (precision + recall).

Step-by-step process:

a) Calculate the true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) for each
class using the confusion matrix.

b) Use the formulas mentioned above to calculate
accuracy, precision, recall, and F1 score for each class.

c) Optionally, you can compute micro-averaged and
macro-averaged values for precision, recall, and F1 score
across all classes.

This process enables you to extract evaluation metrics
from the confusion matrix, providing insights into the
performance of a classification model across different
classes.

Results:

TP: 3312

Overall Accuracy: 92%

TABLE II. ACCURACY CHART FOR NON OPTIMIZED

DATASET

Class n
(truth)

n
(classified)

Accuracy Precision Recall F1
Score

1 978 1000 96.17% 0.92 0.94 0.93

2 481 500 98.31% 0.92 0.96 0.94

3 570 600 98.17% 0.92 0.97 0.94

4 663 700 97.92% 0.92 0.97 0.94

5 908 800 93.44% 0.92 0.81 0.86

Training and testing of dataset using ANN model after
filter dataset using PSO has provided following confusion
matrix:

TABLE III. CONFUSION MATRIX FOR PROPOSED WORK

 Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 940 7 4 9 40

Class 2 6 470 5 3 16

Class 3 8 2 564 9 17

Class 4 3 7 8 658 24

Class 5 32 7 4 5 752

Result:

TP: 3384

Overall Accuracy: 94%

TABLE IV. ACCURACY CHART FOR PROPOSED WORK

Class n
(truth)

n
(classified)

Accuracy Precision Recall F1
Score

1 989 1000 96.97% 0.94 0.95 0.95

2 493 500 98.53% 0.94 0.95 0.95

3 585 600 98.42% 0.94 0.96 0.95

4 684 700 98.11% 0.94 0.96 0.95

5 849 800 95.97% 0.94 0.89 0.91

In the comparative analysis section, we assess the
performance of our proposed hybrid approach against several
benchmarks, including standalone ANN and PSO models, as
well as other established techniques commonly employed in
component-based software selection. Our evaluation aims to
provide a comprehensive understanding of the effectiveness
and practical utility of our approach in comparison to
existing methodologies. Firstly, we compare our hybrid
approach to standalone ANN and PSO models. We
rigorously evaluate the performance of each individual
technique across a range of metrics, including accuracy,
convergence speed, and robustness.

By conducting experiments under various scenarios and
constraints, we gain insights into the strengths and
limitations of standalone ANN and PSO models in
component-based selection tasks. Additionally, we
benchmark our proposed approach against other prominent
techniques utilized in the field. This includes methodologies
such as Decision Trees, SVM, GA, and Rule-Based Systems.
Each technique is evaluated based on its ability to handle the
complexities of component selection, considering factors
such as interpretability, scalability, and computational
efficiency.

Furthermore, we establish appropriate benchmarks and
evaluation metrics to ensure fair and consistent comparisons
across different techniques. Real-world datasets or synthetic
datasets with known ground truths are utilized to validate the
performance of each approach under controlled conditions.
Through extensive experimentation and analysis, we uncover
valuable insights into the comparative strengths and
weaknesses of our proposed hybrid approach relative.
Comparison of Non optimized and optimized dataset overall
accuracy during CBSE

154

TABLE V. COMPARISON OF OVERALL ACCURACY

Overall Accuracy for Non
optimized CBSE model

Overall Accuracy for Optimized
CBSE model

92 94

Fig. 5. Comparison of overall accuracy

TABLE VI. COMPARISON OF OVERALL LOSS

Overall Accuracy for Non
optimized CBSE model

Overall Accuracy for Optimized
CBSE model

8 6

Fig. 6. Comparison of overall loss

When comparing the time consumption between an
optimized and a non-optimized dataset, several factors could
influence why the overall time consumption might be greater
for the optimized dataset despite its optimizations.

1) Preprocessing and Feature Engineering: The

optimized dataset may involve more complex preprocessing

steps or feature engineering techniques to improve the

quality of the data or to create more informative features.

2) Model Training: With an optimized dataset, models

may take longer to train due to increased data volume or

complexity resulting from feature engineering.

3) Hyperparameter Tuning: Optimizing a dataset often

involves tuning model hyperparameters to achieve better

performance. This process typically requires training

multiple models with different hyperparameter

configurations, which can significantly increase the overall

time consumption compared to training a single model with

default hyperparameters.

4) Cross-Validation: To ensure robustness and

generalization of the model on the optimized dataset, cross-

validation techniques might be employed.

5) Evaluation and Validation: After training, models on

the optimized dataset may undergo more extensive

evaluation and validation procedures to assess their

performance thoroughly.

6) Iterative Optimization Process: Optimization is often

an iterative process, where adjustments are made based on

performance metrics, and models are retrained multiple

times until satisfactory results are achieved.

7) Resource Constraints: Despite optimizations, the

computational resources available for training and

evaluation might be limited, leading to longer processing

times due to queuing or resource contention.
Overall, while optimizations in the dataset can lead to

better model performance, they often come at the cost of
increased time consumption due to the additional steps
involved in data preprocessing, model training,
hyperparameter tuning, and evaluation. These trade-offs
should be carefully considered based on the specific
requirements and constraints of the project.

TABLE VII. COMPARISON OF OVERALL TIME CONSUMPTION

Overall Time consumption for
Non optimized CBSE model

(Seconds)

Overall Time consumption for
Optimized CBSE model

(Seconds)
345 245

Fig. 7. Comparison of overall Time consumption for non optimized and
optimized CBSE (Hybrid) model

VI. CONCLUSION

In the proposed research it has been observed that an
CBSE model that did not consider optimized dataset is
providing less accuracy. Whereas the proposed model is
considering optimized dataset has provided more accuracy as
compared to the conventional approach. Several factors that
influenced the accuracy are the size of the dataset, batch size,
number of epochs, and hidden layers used in the research. It
is concluded that proposed model is yielding better accuracy,
less error and better performance as compared to
conventional models.

VII. FUTURE SCOPE OF RESEARCH

Component-based selection model is capable to provide
more control and lower maintenance costs. Searching for

155

other applications where similar code might be used is
reduced. It allows faster development to save time and
increase revenue. Moreover it is also capable to take
advantage of specialized skills. Thus hybrid approach
proposed for CBSE model is capable to enhance its
scalability, flexibility and efficiency.

REFERENCES

[1] R. K. Singh and S. K. Jha, “A novel approach for improving testing
technique of component based software,” 2016 5th Int. Conf. Reliab.
Infocom Technol. Optim. ICRITO 2016 Trends Futur. Dir., pp. 135–
138, 2016, doi: 10.1109/ICRITO.2016.7784940.

[2] T. Vale, I. Crnkovic, E. S. De Almeida, P. A. D. M. Silveira Neto, Y.
C. Cavalcanti, and S. R. D. L. Meira, “Twenty-eight years of
component-based software engineering,” J. Syst. Softw., vol. 111, pp.
128–148, 2016, doi: 10.1016/j.jss.2015.09.019.

[3] M. V. M. Oliveira, P. Antonino, R. Ramos, A. Sampaio, A. Mota, and
A. W. Roscoe, “Rigorous development of component-based systems
using component metadata and patterns,” Form. Asp. Comput., vol.
28, no. 6, pp. 937–1004, 2016, doi: 10.1007/s00165-016-0375-1.

[4] L. Qi, W. Dou, and J. Chen, “Weighted principal component analysis-
based service selection method for multimedia services in cloud,”
Computing, vol. 98, no. 1–2, pp. 195–214, 2016, doi:
10.1007/s00607-014- 0413-x.

[5] A. Parsaie, A. H. Haghiabi, M. Saneie, and H. Torabi, “Applications
of soft computing techniques for prediction of energy dissipation on
stepped spillways,” Neural Comput. Appl., vol. 29, no. 12, pp. 1393–
1409, 2018, doi: 10.1007/s00521-016-2667-z.

[6] A. Gupta, N. Bokde, and K. D. Kulat, “Hybrid Leakage Management
for Water Network Using PSF Algorithm and Soft Computing
Techniques,” Water Resour. Manag., vol. 32, no. 3, pp. 1133–1151,
2018, doi: 10.1007/s11269-017-1859-3.

[7] G. Kaur, N. Bhardwaj, and P. K. Singh, “An analytic review on image
enhancement techniques based on soft computing approach,” Adv.
Intell. Syst. Comput., vol. 651, pp. 255–265, 2018, doi: 10.1007/978-
981- 10-6614-6_26.

[8] H. Delafrouz, A. Ghaheri, and M. A. Ghorbani, “A novel hybrid
neural network based on phase space reconstruction technique for
daily river flow prediction,” Soft Comput., vol. 22, no. 7, pp. 2205–
2215, 2018, doi: 10.1007/s00500-016-2480-8.

[9] C. Diwaker, P. Tomar, R. C. Poonia, and V. Singh, “Prediction of
Software Reliability using Bio Inspired Soft Computing Techniques,”
J. Med. Syst., vol. 42, no. 5, 2018, doi: 10.1007/s10916-018-0952-3.

[10] B. B. Gupta, D. P. Agrawal, S. Yamaguchi, and M. Sheng, “Advances
in applying soft computing techniques for big data and cloud
computing,” Soft Comput., vol. 22, no. 23, pp. 7679–7683, 2018, doi:
10.1007/s00500-018-3575-1.

[11] O. Bhardwaj and S. Kumar Jha, “Quality assurance through soft
computing techniques in component based software,” Proc. 2017 Int.
Conf. Smart Technol. Smart Nation, SmartTechCon 2017, pp. 277–
282, 2018, doi: 10.1109/SmartTechCon.2017.8358382.

[12] S. K. Shreyas and A. Dey, “Application of soft computing techniques
in tunnelling and underground excavations: state of the art and future
prospects,” Innov. Infrastruct. Solut., vol. 4, no. 1, 2019, doi:
10.1007/s41062-019-0234-z.

[13] Banga, A., & Bhatia, P. K. (2021). Optimized Component based
Selection using LSTM Model by Integrating Hybrid MVO-PSO Soft
Computing Technique. In Advances in Science, Technology and
Engineering Systems Journal (Vol. 6, Issue 4, pp. 62–71). ASTES
Journal. https://doi.org/10.25046/aj060408

[14] Banga, A., & Bhatia, P. K. (2021). Software Component Selection in
CBSE Considering Cost, Reliability, and Delivery Delay Using PSO-
integrated MVO and ALO. In Emerging Research in Computing,
Information, Communication and Applications (pp. 455–479).
Springer Singapore. https://doi.org/10.1007/978-981-16-1342-5_36

[15] Bousmaha, R., Hamou, R. M., & Amine, A. (2021). Automatic
selection of hidden neurons and weights in neural networks for data
classification using hybrid particle swarm optimization, multi-verse
optimization based on Lévy flight. In Evolutionary Intelligence (Vol.
15, Issue 3, pp. 1695–1714). Springer Science and Business Media
LLC. https://doi.org/10.1007/s12065-021-00579-w

[16] Gupta, Dr. V. (2021). STUDY OF PSO AND MVO
OPTIMIZATION TECHNIQUES FOR TEST EFFORT
ESTIMATION. In Innovative Research Thoughts (pp. 223–235).
Shodh Sagar. https://doi.org/10.36676/irt.2021-v7i4-31

[17] Wang, R., Hao, K., Chen, L., Liu, X., Zhu, X., & Zhao, C. (2023). A
modified hybrid particle swarm optimization based on comprehensive
learning and dynamic multi-swarm strategy. In Soft Computing (Vol.
28, Issue 5, pp. 3879–3903). Springer Science and Business Media
LLC. https://doi.org/10.1007/s00500-023-09332-0

[18] Y. Yu, C. Zhang, X. Gu, and Y. Cui, “Neural Comput. Appl., vol. 31,
no. 12, pp. 8641–8660, 2019, doi: 10.1007/s00521-018-3679-7.

[19] Q. Zhou, P. Yan, H. Liu, and Y. Xin, “A hybrid fault diagnosis
method for mechanical components based on ontology and signal
analysis,” J. Intell. Manuf., vol. 30, no. 4, pp. 1693–1715, 2019, doi:
10.1007/s10845- 017-1351-1.

[20] A. Tolba and E. Elashkar, “Soft computing approaches based
bookmark selection and clustering techniques for social tagging
systems,” Cluster Comput., vol. 22, pp. 3183–3189, 2019, doi:
10.1007/s10586-018-2014- 5.

[21] N. Natarajan and C. Sudheer, “Groundwater level forecasting using
soft computing techniques,” Neural Comput. Appl., vol. 32, no. 12,
pp. 7691–7708, 2020, doi: 10.1007/s00521-019-04234-5.

[22] K. Sheoran, P. Tomar, and R. Mishra, “A novel quality prediction
model for component based software system using ACO–NM
optimized extreme learning machine,” Cogn. Neurodyn., vol. 14, no.
4, pp. 509– 522, 2020, doi: 10.1007/s11571-020-09585-7.

[23] N. Basurto and Á. Herrero, “Data Selection to Improve Anomaly
Detection in a Component-Based Robot,” Adv. Intell. Syst. Comput.,
vol. 950, pp. 241–250, 2020, doi: 10.1007/978-3-030-20055-8_23.

[24] A. Charitopoulos, M. Rangoussi, and D. Koulouriotis, “On the Use of
Soft Computing Methods in Educational Data Mining and Learning
Analytics Research: a Review of Years 2010–2018,” Int. J. Artif.
Intell. Educ., vol. 30, no. 3, pp. 371–430, 2020, doi: 10.1007/s40593-
020-00200-8.

[25] N. Sharma et al., “Optimal deflection and stacking sequence
prediction of curved composite structure using hybrid (FEM and soft
computing) technique,” Eng. Comput., vol. 37, no. 1, pp. 477–487,
2021, doi: 10.1007/s00366-019-00836-8.

[26] A. Mokni et al., “A formal approach for managing component-based
architecture evolution To cite this version : HAL Id : hal-01380397,”
2021.

[27] E. E. Başakın, Ö. Ekmekcioğlu, and M. Özger, “Drought prediction
using hybrid soft-computing methods for semi-arid region,” Model.
Earth Syst. Environ., vol. 7, no. 4, pp. 2363–2371, 2021, doi:
10.1007/s40808- 020-01010-6.

[28] S. Ghani, S. Kumari, and A. Bardhan, “A novel liquefaction study for
fine-grained soil using PCA-based hybrid soft computing models,”
Sadhana - Acad. Proc. Eng. Sci., vol. 46, no. 3, pp. 1–17, 2021, doi:
10.1007/s12046-021-01640-1.

[29] A. Radhika and M. S. Masood, “Effective dimensionality reduction
by using soft computing method in data mining techniques,” Soft
Comput., vol. 25, no. 6, pp. 4643–4651, 2021, doi: 10.1007/s00500-
020-05474-7.

[30] O. P. Singh, A. K. Singh, G. Srivastava, and N. Kumar, “Image
watermarking using soft computing techniques: A comprehensive
survey,” Multimed. Tools Appl., vol. 80, no. 20, pp. 30367–30398,
2021, doi: 10.1007/s11042-020-09606-x.

156

